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Abstract—Some 4 0-substituted flavonols undergo [4 + 2] cycloaddition with 3,5-di-tert-butyl-1,2-benzoquinone to give
trioxanaphthacenes.
� 2004 Published by Elsevier Ltd.
ð1Þ
Quercetin is one of the most abundant natural flavo-
noids in edible fruits and vegetables. Flavonols have
been recognized as antioxidants, scavenging dioxygen-
derived radicals.1–7 In recent years, their physiological
potential has attracted much attention in relation to
their role in cellular and extracellular antioxidant
defences against oxygen radicals.8–10

In order to clarify which parts of the molecule contribute
to the antioxidant activity, the reaction products of 1
accompanying the auto-oxidation of methyl linoleate,
have been studied and the major product 2 has been
found to be a novel doubly-linked oxidative dimer of
1.11 The structure of 2 indicated that the attack of radical
species upon the molecule of 1 gave 2 via the elimination
of hydrogen from the hydroxyl groups at the C-3, 3 0- and
4 0-positions. From this result, it was concluded that in
homogenous medium, 1 acts mainly as a hydrogen-
donating antioxidant and the hydroxyl groups at the
C-3, 3 0- and 4 0-positions and the double bond at the C-
2/C-3 are essential for the antioxidant activity (Eq. 1).

Looking for a reasonable explanation for this reaction
(Eq. 1), we considered other possible pathways. In light
of our previous studies on radical-initiated oxidation of
catechols12 we assumed that the first step is the two-elec-
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tron oxidation of the catechol moiety of 1 resulting in
the corresponding 3 0,4 0-quinone derivative, which then
reacts with the C-2/C-3 double bond of 1 in a Diels–Al-
der reaction. To support this hypothesis, the reaction of
3,5-di-tert-butylquinone with several substituted flavo-
nol derivatives was investigated (Eq. 2).13

ð2Þ
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Table 1. 1H and 13C NMR data of derivatives 5a–d produced via reaction shown in Eq. 2

Position 5aa

d 1H

(ppm)

5a

d 13C

(ppm)

5ba

d 1H

(ppm)

5b

d 13C

(ppm)

5cb

d 1H

(ppm)

5c

d 13C

(ppm)

5da

d 1H

(ppm)

5d (minor)

d 13C

(ppm)

1 –– 138.2 –– 138.1 –– 137.3 –– 137.9 (138.1)

2 7.03 m (1H) 117.6 7.01 m (1H) 117.5 6.93 m (1H) 116.5 7.06 (7.01) m (1H) 117.4 (117.5)

3b –– 144.9 –– 144.8 –– 143.7 –– 144.7 (144.8)

4 7.07 m (1H) 112.8 7.05 m (1H) 112.8 6.93 m (1H) 112.1 6.85 (7.05) m (1H) 112.8 (112.8)

4a –– 139.7 –– 139.7 –– 139.9 –– 140.1 (139.8)

5a –– 100.8 –– 100.8 –– 100.2 –– 100.8 (100.7)

6a –– 159.4 –– 159.4 –– 159.7 –– 159.5 (159.4)

7 7.11 m (1H) 118.2 7.09 m (1H) 118.2 6.44 m (1H) 102.9 7.06 (7.09) m (1H) 118.3 (118.2)

8 7.60 m (1H) 138.2 7.58 m (1H) 138.1 –– 166.4 7.58 m (1H) 138.9 (138.1)

9 7.10 m (1H) 122.4 7.08 m (1H) 122.3 6.57 m (1H) 111.8 7.08 m (1H) 122.3 (122.3)

10 7.89 m (1H) 127.9 7.87 m (1H) 127.8 7.66 m (1H) 129.4 7.87 m (1H) 127.9 (127.8)

10a –– 117.3 –– 117.3 –– 110.7 –– 117.5 (117.3)

11 –– 186.7 –– 186.7 –– 184.9 –– 186.7 (186.8)

11a –– 88.8 –– 88.8 –– 90.0 –– 88.8 (88.9)

12a –– 136.7 –– 136.7 –– 137.1 –– 136.3 (136.7)

1 0 –– 133.7 –– 130.7 –– 134.7 –– 126.0 (125.6)

2 0,6 0 7.66 m (2H) 128.1 7.54 m (2H) 128.1 7.64 m (1H) 127.7 7.59 m (1H) 129.7 (129.7)

3 0,5 0 7.30 m (2H) 128.2 7.10 m (2H) 128.8 7.37 m (1H) 128.0 6.80 (6.82) m (1H) 113.4 (113.5)

4 0 7.33 m (1H) 129.8 –– 139.9 7.37 m (1H) 129.7 –– 160.5 (160.4)

R1 –– –– 2.30 s (3H) 21.1 –– –– 3.76 s (3H) 55.2 (55.2)

R2 –– –– –– –– 8.61 s (1H) –– –– ––

t-Bu-a(C-1) –– 35.0 –– 35.0 –– 34.2 –– 35.1 (35.0)

t-Bu-Me(C-1) 1.27 s (9H) 29.7 1.25 s (9H) 29.7 1.24 s (9H) 29.6 1.45 (1.26) s (9H) 29.9 (29.7)

t-Bu-b(C-3) –– 34.6 –– 34.5 –– 34.6 –– 34.5 (34.6)

t-Bu-Me(C-3) 1.32 s (9H) 31.5 1.30 s (9H) 31.4 1.25 s (9H) 31.3 1.28 (1.31) s (9H) 31.4 (31.5)

–OH 5.06 s (1H) –– 5.07 s (1H) –– NA –– 4.99 s (1H) ––

(5.00 s (1H))c (4.99 s (1H))d –– NA –– (5.07 s (1H))e ––

a In CDCl3.
b In DMSO-d6.
cMinor species (�10%).
dMinor species (�10%).
eMinor species (�47%).

Figure 1. Solid-state structure of 5a.
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A solution of di-tert-butyl-1,2-benzoquinone 3 and flav-
onol 4a in dry toluene was refluxed under argon for 10h.
The solvent was removed under reduced pressure and
the residue was recrystallized from ethanol. After the
Diels–Alder reaction 1,3-di-tert-butyl-5a-phenyl-11a-
hydroxy-5,6,12-hexahydro-5,6,12-trioxanaphthacene-11-
one 5a was obtained as a racemic mixture (90% major
species), based on the 1H and 13C NMR measurements
(Table 1) in 55% yield. The X-ray single-crystal structure
of 5a (5aS,11aS and 5aR,11aR diastereomers) was deter-
mined,14 and its computer-generated drawing is shown
in Figure 1. The structural determination with spectral
evidence of 4 0- and 7 0-substituted products (5b–d) and
their composition are also summarized in Table 1.

The results obtained show that the substituted flavonols
are able to act as dienophiles by the use of their C-2/C-3
double bonds in the reaction with o-quinones in good
yields. On this basis it seems reasonable to suggest that
in the auto-oxidation of quercetin, as described by Hir-
ose and co-workers, initially the catechol moiety is 2e
oxidized to the o-quinone, which undergoes subsequent
Diels–Alder reaction with quercetin leading to the
trioxanaphthacene.
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